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1 Introduction

This paper is an introduction to “Q-nice” polynomials: polynomials 𝑃 with rational
coefficients such that both 𝑃 and 𝑃′ only have rational roots. For example:

𝑃 = 𝑋 (𝑋 − 3) (𝑋 − 8)
𝑄 = 𝑋 (𝑋 − 25)(𝑋 − 88) (𝑋 − 165)
𝑅 = (𝑋 − 141)(𝑋 − 193)(𝑋 + 167)2

𝑆 = 𝑋 (𝑋 − 36)(𝑋 − 57) (𝑋 − 92)(𝑋 − 156)

all are nice polynomials: 𝑅 is from [7], 𝑄 and 𝑆 were copied from [10]; in the latter
reference the roots are scaled for the derivative to also have integer roots: for𝑄, one needs
to double the roots, for 𝑆 one needs to multiply them by 5, and 𝑋 (𝑋 − 3)(𝑋 − 8) must be
replaced by 𝑋 (𝑋 − 9) (𝑋 − 24) to let the derivative also have integer roots.

Caldwell [6] found parametrized families of nice polynomials with four distinct roots
in degree 4. These polynomials were symmetrical (with respect to average of the roots),
and [6] also gave the first five examples of nice non-symmetric degree four polynomials
with distinct roots. More examples were found by Evard [10].

A stronger requirement defines “rational-derived” polynomials: those polynomials 𝑃
with rational coefficients and rational roots, whose derivatives of all orders only have
rational roots. This is the case of 𝑃 above (of course as 𝑃′′ is of degree one) but neither
of 𝑄 nor of 𝑆 as their second derivatives do not factorize over Q. Remarkably 𝑅 is
rational-derived and for a time it was even conjectured that all rational-derived degree
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four polynomials with at least three distinct roots could be obtained from 𝑅 by affine
transformations [7]. This was shown to be false first by Galvin and MacDougall who found
two other examples (see [13] for some explanations on their computer based approach)
and then by Buchholz and Kelly who obtained infinitely many non-equivalent examples
parametrized by a rank one subgroup of the group of rational points on a certain elliptic
curve ([3]).

One is also interested in 𝑃 and its derivative or higher derivatives having only integer
roots: hence the notions of Z-nice or Z-derived polynomials (cf [4] for the terminology;
in the literature “nice” has been used it seems mainly to mean Z-nice; and “totally nice”
to mean “Z-derived”). From Vieta’s formulae relating roots to coefficients, the average
𝑥(𝑃) of all (complex) roots (counted with multiplicities) verifies 𝑥(𝑃) = 𝑥(𝑃′). So for 𝑃
of degree 𝑑 which is Z-nice, both 𝑑𝑥(𝑃) and (𝑑 − 1)𝑥(𝑃) are integers, hence the average
𝑥(𝑃) of the roots must be itself an integer. This 𝑥(𝑃) is also the root of 𝑃(𝑑−1) . So for
𝑑 = 3 any Z-nice polynomial (such as 𝑋 (𝑋 − 9) (𝑋 − 24) whose average of the roots is 11)
is Z-derived.

In higher degrees the generic examples of “rational-derived” polynomials are the
degree 𝑑 polynomials with rational roots, one of them being of multiplicity at least 𝑑 − 1:
translating to put the multiple root at the origin we have thus 𝑃 = 𝑒𝑋𝑑−1(𝑋 − 𝑦) =

𝑒𝑋𝑑 − 𝑒𝑦𝑋𝑑−1 and all higher derivatives keep this shape (with varying 𝑑, 𝑒 and 𝑦), thus
the roots are always rational.

There is actually a conjecture ([7]) that for 𝑑 ≥ 5, these are the sole examples.
Although the degree 𝑑 = 4 case is now known to be more complex than hoped for in
[7], the 𝑑 ≥ 5 conjecture follows, according to results of Buchholz and MacDougall
[4] combined with those of Flynn [11], from the hypothesis that there does not exist a
rational-derived polynomial of degree four with distinct roots. Nowadays, the study is still
on-going in degrees four and higher, see among others [1] and [9].

We will mainly focus on degree 3 however, where all is known, and accessible via
undergraduate algebra: certainly many amateurs and professionals alike have encountered
and solved the problem privately; earliest references we could find are Chapple [8] (1960)
and Zuser [15] (1963). Other references include [2], [5], [12]. We could not access [8]
nor [12] but only [13] which summarizes relevant information.

Here is how our treatment differs from what we could find in the literature:

• we explain (in arbitrary degree) the precise relation between rational and integer
notions of equivalence classes,

• we give in degree three the complete one-to-one enumeration of these classes; the
precise and complete description turns out to involve an interesting incarnation of
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the dihedral group 𝐷12 of order 12 as a group of homographic transformations.

• we obtain the parametrization of nice cubics in two independent “elementary”
ways, which do not rely on an analysis of the 𝑎2 − 𝑎𝑏 + 𝑏2 = □ diophantine equation
using Pythagorean triples or the chord-slope method to parametrize the ellipse
𝑎2 − 𝑎𝑏 + 𝑏2 = 1. Our second “effortless” method takes place in the field Q( 𝑗)
generated by cube roots of unity. This is also closely related with the dihedral group
mentioned in the first item.

We will handle cubic polynomials via the idea of the Lagrange resolvent. We do not
need to know the Cardano’s formulae nor even to know how the Lagrange approach, which
prefigures ideas of Galois theory, allows to obtain them. But we will focus first on the
“ambiguities” (hence “symmetry” in the title) of the resolvent, then on its “arithmetic”.
In particular we will deduce the parametrization of nice cubics from the fact that the
unit-norm equation 𝑁 (𝑦) = 𝑦𝑦 = 1 in Q( 𝑗) has for solutions 𝑦 = 𝑧/𝑧, 𝑧 ∈ Q( 𝑗). Here
𝑗 = exp(2𝜋𝑖/3), 1 + 𝑗 + 𝑗2 = 0.

And our characterization can be summarized as follows: a cubic polynomial with
rational coefficients is nice if and only if the Lagrange resolvent is in Q( 𝑗) and is, modulo
the multiplicative action by Q∗, a square in this field.

The Gaussian theory of factorization in Z[ 𝑗] would provide an alternative approach
(see e.g. [14] for algebraic number theory) but we have decided to limit the scope of
this paper to common knowledge undergraduate algebra techniques only. Some working
familiarity with homographic transformations and with elementary group theory will be
helpful.

We have included various graphs to illustrate the manipulated concepts. We hope
that this text will motivate readers into pursuing their own researches into the conjectures
related to degree four and higher.

2 Equivalence classes of nice polynomials

Definition 1. A polynomial 𝑃 is Q-nice if itself and its first derivative both have all their
(complex) roots in the field of rational numbers. It is also required that all coefficients of
𝑃 be rational.

Constant and degree one polynomials with rational coefficients are (a bit boring)
examples of nice polynomials. Under the condition of rationality of the roots one only has
(thanks to Vieta’s formulae) to look at the polynomial highest degree coefficient to know
if all its coefficients are rational.
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Definition 2. A polynomial 𝑃 is Z-nice if 𝑃 and 𝑃′ both have integer coefficients and
roots.

Let 𝑄 monic of degree 𝑑 ≥ 1 with rational roots 𝑥1, . . . , 𝑥𝑑 (with possible multiplici-
ties) and such that 𝑄′ also has only rational roots 𝑦1, . . . , 𝑦𝑑−1. If 𝑁 is a positive integer
multiple of all of the denominators of the 𝑥𝑖 then 𝑃 =

∏
𝑖 (𝑋−𝑁𝑥𝑖) has integer coefficients;

the roots of 𝑃′ are the 𝑁𝑦𝑖, 1 ≤ 𝑖 ≤ 𝑑 − 1. So if 𝑁 is suitably chosen, 𝑃 is Z-nice. And
𝑄 is recoverable from 𝑃 as 𝑄(𝑋) = 𝑁−𝑑𝑃(𝑁𝑋). We will give a more precise statement
later.

Let’s now formalize that certain simple transformations preserve the “niceness”.

Definition 3. Two Q-nice polynomials 𝑄1 and 𝑄2 are equivalent if 𝑄2(𝑋) = 𝜈𝑄1((𝑋 −
𝜇)/𝜆) for some rational numbers 𝜆 ≠ 0, 𝜈 ≠ 0, and 𝜇.

In other words the roots of 𝑄2 (hence resp. of 𝑄′
2) are obtained from those of 𝑄1

(resp. 𝑄′
1) by the invertible rational affine transformation 𝑥 ↦→ 𝜆𝑥 + 𝜇. This is indeed an

equivalence relation.
In the integer case, we limit to invertible integer affine transformations 𝑥 ↦→ ±𝑥 + 𝜇 to

define Z-equivalence classes. Notice that we still allow in this definition 𝜈 ∈ Q∗, in effect
ignoring the leading coefficient.

Definition 4. Two Z-nice polynomials 𝑃1 and 𝑃2 are (Z) equivalent if 𝑃2(𝑋) = 𝜈𝑃1((𝑋 −
𝜇)/𝜆) with 𝜆 = ±1, 𝜇 ∈ Z, and 𝜈 ∈ Q∗.

We will use the notation C(𝑄) for the equivalence class of a Q-nice 𝑄 and CZ(𝑃) for
the Z-equivalence class of a Z-nice 𝑃. Integer equivalence classes can be indexed by a
positive integer, the “level”:

Definition 5. The level ℓ(𝑃) of a Z-nice polynomial 𝑃 of degree 𝑑 is the greatest common
divisor of the differences 𝑥𝑖 − 𝑥 𝑗 of roots of 𝑃 and of the differences 𝑥𝑖 − 𝑦 𝑗 between roots
of 𝑃 and roots of 𝑃′. Equivalently it is gcd(𝑥1 − 𝑥𝑑 , . . . , 𝑥𝑑−1 − 𝑥𝑑 , 𝑦1 − 𝑥𝑑 , . . . , 𝑦𝑑−1 − 𝑥𝑑)
where 𝑥𝑑 is any given root of 𝑃.

The level is constant on any Z-equivalence class. The nice polynomials of zero level
are the monomials 𝜈(𝑋 − 𝑥𝑑)𝑑 (which includes all polynomials of degree at most 1).
Polynomials with at least two distinct roots have positive levels.

Definition 6. If 𝑃2(𝑋) = 𝜈𝑃1((𝑋 − 𝜇)/𝜆) for some 𝜇 ∈ Z, 𝜈 ∈ Q∗ and 𝜆 ∈ Z \ {0}, we
say that 𝑃2 “is generated” from 𝑃1.

If 𝑃2 is generated from 𝑃1, i.e. its roots are obtained from those of 𝑃1 by the integer
affine transform 𝑥 ↦→ 𝜆𝑥 + 𝜇, then ℓ(𝑃2) = |𝜆 |ℓ(𝑃1) and the equality ℓ(𝑃2) = ℓ(𝑃1), in
case 𝑃1 has at least two distinct roots hence has non-zero level, thus happens if and only
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if 𝜆 = ±1, i.e. if 𝑃1 and 𝑃2 are Z-equivalent (if ℓ(𝑃1) = 0 then 𝑃1 and 𝑃2 are indeed
Z-equivalent, but the 𝜆 did not have to be ±1).
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Figure 1: Roots of 𝑋 (𝑋 − 3)(𝑋 − 8) and its gcd( 4
3 , 3, 6, 8) =

gcd(4,9,18,24)
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Here is the main result relating the two types of equivalence classes:

Theorem 1. For any equivalence class C of Q-nice polynomials of degree 𝑑 > 1, except
C(𝑋𝑑), and any integer ℓ > 0, the Z-nice polynomials of level ℓ contained in C are a
single (non-empty) Z-equivalence class.

In particular there exists a Z-nice polynomial 𝑃0 of level 1, all such Z-nice polynomials
in C of level 1 are a single Z-equivalence class and 𝑃0 generates all Z-nice polynomials in
C. Notice also as corollary that any Z-nice polynomial with level ℓ > 1 can be generated
from a Z-nice polynomial with level 1.

To present the proof of the theorem conveniently, let us first recall that the notion of
gcd extends to rational numbers: if 𝑞1, . . . , 𝑞𝑟 are given, there exists a unique non-negative
rational number 𝑞 such that:

{𝑛1𝑞1 + · · · + 𝑛𝑟𝑞𝑟 , 𝑛1, . . . , 𝑛𝑟 ∈ Z} = 𝑞Z (1)

We write 𝑞 = gcd(𝑞1, . . . , 𝑞𝑟). If 𝑁 ∈ N is such that all 𝑁𝑞𝑖’s are in Z, then 𝑞 =

gcd(𝑁𝑞1, . . . , 𝑁𝑞𝑟)/𝑁 , as is easily verified (once one knows how the usual gcd of integers
relates to Z-ideals and multi-term Bézout identities). This allows to extend the notion of
level:

Definition 7. The ( fractional) level ℓ(𝑄) of a Q-nice polynomial 𝑄 is the gcd of the
differences 𝑥𝑖 − 𝑥 𝑗 of roots of 𝑄 and of their differences 𝑥𝑖 − 𝑦 𝑗 with the roots of 𝑄′.
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As per integer polyomials, the level scales under𝑄1(𝑋) = 𝜈𝑄((𝑋 −𝜇)/𝜆) equivalence
transformations: ℓ(𝑄1) = |𝜆 |ℓ(𝑄).

Proof of Theorem 1. From any Q-nice polynomial of non-zero level 𝜆 = ℓ(𝑄) (i.e. a
polynomial with at least two distinct roots, which we have ensured by excluding the class
of 𝑋𝑑) we can obtain a polynomial 𝑄1 of level 1 via 𝑄1(𝑋) = 𝑄(𝜆𝑋). Writing 𝑥1, . . . ,
𝑥𝑑 , 𝑦1, . . . , 𝑦𝑑−1 for the roots of 𝑄1 and its derivative, this implies that all of 𝑥𝑖 − 𝑥𝑑 ,
𝑦 𝑗 − 𝑥𝑑 are integers. So 𝑄2 = 𝑄1(𝑥 + 𝑥𝑑) only has integer roots (one of them being 0)
and its derivative too. Multiplying it by a constant to turn it into a monic polynomial,
we obtain 𝑃0 with integer coefficients (from being monic with integer roots). So 𝑃0 is a
Z-nice polynomial of level 1 in the equivalence class of 𝑄. From now on 𝑥𝑖, 1 ≤ 𝑖 < 𝑑,
𝑥𝑑 = 0, and 𝑦 𝑗 , 1 ≤ 𝑗 < 𝑑 denote the roots of 𝑃0 and of its derivative. They are integers,
with no common divisor > 1.

We now prove that any Z-nice 𝑃 in C is generated by such a 𝑃0. Let 𝑃 be another
monic Z-nice polynomial in C. Let 𝑢𝑖, 1 ≤ 𝑖 ≤ 𝑑 be its roots and 𝑣 𝑗 , 1 ≤ 𝑗 < 𝑑 be the
roots of its derivative 𝑃′. There exists a Q-affine transformation 𝑥 ↦→ 𝜆𝑥 + 𝜇 mapping the
roots of 𝑃0 (resp. 𝑃′0) to those of 𝑃 (resp. 𝑃′). After re-enumerating the roots of 𝑃 and 𝑃′

we can assume 𝑢𝑖 = 𝜆𝑥𝑖 + 𝜇 for 1 ≤ 𝑖 ≤ 𝑑 and 𝑣 𝑗 = 𝜆𝑦 𝑗 + 𝜇 for 1 ≤ 𝑗 < 𝑑. In particular
𝑢𝑑 = 𝜇 (as 𝑥𝑑 = 0), so 𝜇 ∈ Z. Hence all 𝜆𝑥𝑖, 𝜆𝑦𝑖, are integers. As 𝑥𝑑 = 0, and ℓ(𝑃0) = 1,
there is a Bézout identity expressing 1 as Z-linear combination of the 𝑥𝑖, 1 ≤ 𝑖 < 𝑑, and
𝑦 𝑗 , 1 ≤ 𝑗 < 𝑑. Multiplying by 𝜆, we see that it is an integer. So 𝑃 is indeed generated
from 𝑃0 by a Z-affine transformation (invertible in Q, not necessarily in Z). Notice that
ℓ(𝑃) = |𝜆 | with the notations above.

If conversely 𝑃0 can be generated from 𝑃, this means that its roots are the images of
those of 𝑃 by a Z-affine transformation, 𝑥 ↦→ 𝜆′𝑥 + 𝜇′. The minimal distance between two
distinct roots of 𝑃0 is thus |𝜆′| times the minimal distance between two distinct roots of
𝑃 which itself is |𝜆 | times the minimal distance between two distinct roots of 𝑃0. Hence
|𝜆𝜆′| = 1. And 𝑃 is Z-equivalent to 𝑃0. We have used here that in C no polynomial is a
monomial.

Let now 𝑃1 be another Z-nice polynomial of level 1 in C. Translating it to let it
become 𝑃2 which vanishes at 0, the proof done for 𝑃0 shows that 𝑃2 generates all Z-nice
polynomials in C, hence in particular 𝑃0. So 𝑃0 and 𝑃2, are, by the previous paragraph,
Z-equivalent. So 𝑃0 and 𝑃1 are Z-equivalent.

We have proven so far that Z-nice polynomials of level 1 exist in C and are a single
Z-class; and that any other Z-nice polynomial is generated by 𝑃0 of level 1. Let 𝑃2 and 𝑃3

be two such polynomials of the same level ℓ > 0. The roots of 𝑃2 are obtained from those
of 𝑃0 by an affine transformation 𝑥 ↦→ 𝜖ℓ𝑥 + 𝜇, and those of 𝑃3 by 𝑥 ↦→ 𝜖′ℓ𝑥 + 𝜇′ with
𝜖 = ±1, 𝜖′ = ±1. So the roots of 𝑃3 are obtained from those of 𝑃2 by 𝑥 ↦→ 𝜖𝜖 ′𝑥 − 𝜖𝜖 ′𝜇′ + 𝜇
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and they are in the same Z-class.
This completes the proof of Theorem 1. □

Let’s handle degree two case. A polynomial is Q-nice if and only if its two roots are
rational. Any polynomial with rational roots is either in C(𝑋2) or C(𝑋 (𝑋 − 1)) (there
is an affine transformation mapping 0 and 1 to two arbitrary distinct roots). As per the
integer case, CZ(𝑋2) contains all polynomials with an integer double root. On the other
hand, according to Theorem 1 the Z-nice polynomials in C(𝑋 (𝑋 − 1)) are partitioned into
Z-classes indexed by the positive integer level. The level of 𝑄 = 𝑋 (𝑋 − 1) is 1/2, so we
look at 𝑄1 = 𝑄(𝑋/2) = 𝑋 (𝑋 − 2)/4 and make it monic, obtaining 𝑃0 = 𝑋 (𝑋 − 2) as
a representative of the Z-class of Z-nice level 1 polynomials in C(𝑄). All other Z-nice
polynomials in C(𝑄) are generated from 𝑃0, i.e. of the shape 𝑃 = 𝜈(𝑋 − 𝜇) (𝑋 − 𝜇 − 2𝜆)
with 𝜆, 𝜈 ≠ 0 and 𝜇 being integers. In other terms, the difference (or the sum) of the roots
is even. This can naturally be also be obtained directly, which is left as exercise to the
reader!

3 The precise classification of nice cubic polynomials

Let’s turn to degree 3. Again C(𝑋3) is the single Q-class of monomials, and CZ(𝑋3) also
contains all Z-nice monomials. If 𝑄 has a double root, there is an affine transformation
mapping 0 to the multiple root and 1 to the other one, so C(𝑋2(𝑋 −1)) contains allQ-nice
polynomials having a double root. The level of 𝑄 = 𝑋3 − 𝑋2 is computed from the roots
0, 1 of 𝑄 and 0, 2/3 of 𝑄′ to be 1/3. So we consider 𝑄1 = 𝑄(𝑋/3) = (𝑋3 − 3𝑋2)/27,
then 𝑃0 = 𝑋3 − 3𝑋2 = 𝑋2(𝑋 − 3). This 𝑃0 is of level 1. We conclude from Theorem 1
that the Z-nice cubic polynomials with a double root are partitioned into Z-classes indexed
one-by-one by positive integer levels ℓ, with representatives 𝑋2(𝑋 − 3ℓ).

The real work is for polynomials with three distinct roots. The following (which
includes polynomials with multiple roots) is known:

• Chapple (1960, [8]): let 𝑝, 𝑞, 𝑟, 𝑠 be four rational numbers in arithmetic progression.
Then 𝑋 (𝑋−𝑝𝑟)(𝑋−𝑞𝑠) is a nice rational cubic and this gives all equivalence classes.

• Zuser (1963, [15]): let 𝑢 and 𝑣 be two rational numbers. Then (𝑋 − 𝑢2)(𝑋 −
2𝑢𝑣)(𝑋 − 𝑣2) is a nice rational cubic and this gives all equivalence classes.

We could not access the original Chapple publication, only an extract given in [13], so we
have formulated it using our language of equivalence classes. And Zuser studied Z nice
polynomials and obtained their description from those with roots at 0, 𝑢2 − 2𝑢𝑣, 𝑣2 − 2𝑢𝑣,
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with 𝑢 and 𝑣 integers, but the (𝑋 − 𝑢2) (𝑋 − 2𝑢𝑣)(𝑋 − 𝑣2) form is a nice memorable form,
which we thus call the “Zuser form”, even if it is used as here with 𝑢 and 𝑣 rational.

Taking 𝑝 = 1, 𝑞 = 2, 𝑟 = 3, 𝑠 = 4 in Chapple’s formula, we get 𝑄 = 𝑋 (𝑋 − 3)(𝑋 − 8).
The derivative is 𝑄′ = 3𝑋2 − 22𝑋 + 24 = 3(𝑋 − 4/3)(𝑋 − 6), and the fractional level
of 𝑄 is thus 1/3. To ensure integer roots for the derivative we thus have to rescale by 3,
obtaining 𝑋 (𝑋 − 9) (𝑋 − 24), whose derivative roots are 4 and 18. We will establish that
this 𝑃 has the smallest possible separation 14 between the roots of its derivatives.

We will explain later that generally speaking with a four-term Chapple arithmetic
progression 𝑝, 𝑞, 𝑟, 𝑠 consisting of integers (or 𝑢 and 𝑣 taken to be integers in Zuser
parametrization) we may have to multiply the roots by 3 in order to ensure that the
derivative also has integer roots (thus, Chapple arithmetic progression would have to be
scaled by

√
3 to also account for Z nice polynomials).

Taking Zuser’s formula with 𝑢 = 1 and 𝑣 = 3 (as 𝑣 = 2 gives double root) we get
(𝑋 − 1)(𝑋 − 6) (𝑋 − 9); and with 𝑢 = 1, 𝑣 = −2 we get (𝑋 − 1)(𝑋 + 4) (𝑋 − 4). All three
of 𝑋 (𝑋 − 3) (𝑋 − 8), (𝑋 − 1)(𝑋 − 6) (𝑋 − 9) and (𝑋 − 1) (𝑋 + 4)(𝑋 − 4) are equivalent
up to translation by an integer, replacement of 𝑋 by −𝑋 , and of 𝑃 by −𝑃 to let it be monic
again. The derivative has an integer root, but the other is in 1

3Z, not in Z. After rescaling
we obtain polynomials all in CZ(𝑋 (𝑋 − 9) (𝑋 − 24)).

The Chapple and Zuser forms are indeed elementarily equivalent. To explain this,
let us change notations and write 𝑝 − 2𝑞, 𝑝 − 𝑞, 𝑝, 𝑝 + 𝑞, for the four-term Chapple
arithmetic progression. The Chapple polynomial has roots at 0, 𝑝2 − 2𝑝𝑞, 𝑝2 − 𝑞2. The
map 𝑥 → 𝑝2 − 𝑥 transforms them into the roots 𝑝2, 2𝑝𝑞, 𝑞2, as in Zuser’s parametrization.

Let 𝑤 = 𝑝
𝑞 . To have distinct roots, we need 𝑞 ≠ 0 and 𝑤 ∉ {−1, 0, 1

2 , 1, 2}. The

Chapple and Zuser polynomials are Q-equivalent to 𝑋 (𝑋 − 1)(𝑋 − 𝑎) with 𝑎 = 𝑝2−2𝑝𝑞
𝑝2−𝑞2 =

𝑤2−2𝑤
𝑤2−1 = 2𝑤−𝑤2

1−𝑤2 and the condition 𝑎 ∉ {0, 1,∞} is the same as 𝑤 ∉ {−1, 0, 1
2 , 1, 2,∞}.

Here is a parametrization of Q-nice cubics with distinct roots (the proof will be given
later):

Theorem 2. For any 𝑤 ∈ Q \ {−1, 0, 1
2 , 1, 2}, the polynomial 𝑋 (𝑋 − 1)(𝑋 − 𝑎) with

𝑎 = 2𝑤−𝑤2

1−𝑤2 is a nice rational cubic with distinct roots and this gives all such polynomials
up to Q-equivalence.

More precisely, the equivalence classes of nice rational cubics with distinct roots are
via this association of 𝑋 (𝑋 − 1)(𝑋 − 𝑎) to 𝑤 in one-to-one correspondence with the
rational numbers 𝑤 ∈ (0, 1/(2 +

√
3)).

The second part of the statement corresponds to the choice of one of the two𝑤-intervals
mapping to 0 < 𝑎 < 1

2 . This 0 < 𝑤 < 2 −
√

3 constraint arises if one insists into stating a
one-to-one enumeration of the equivalence classes, which does not seem to have been the

8



case in the literature (probably from being too obvious and going without saying). The
next statement goes into more details about what happens without the constraint:

Theorem 3. For a given 0 < 𝑤0 < 2 −
√

3, there are in total twelve 𝑤’s in Q such that
𝑋 (𝑋−1)(𝑋−𝑎), 𝑎(𝑤) = (2𝑤−𝑤2)/(1−𝑤2), define the sameQ-class as 𝑎(𝑤0). They are
the orbit of 𝑤0 under an action on R ∪ {∞} of the dihedral group 𝐷12 via homographies:

𝑤0,
2𝑤0 − 1
𝑤0 + 1

,
𝑤0 − 1
𝑤0

,
𝑤0 − 2
2𝑤0 − 1

,
1

1 − 𝑤0
,
𝑤0 + 1
2 − 𝑤0

,

𝑤0
𝑤0 − 1

,
2𝑤0 − 1
𝑤0 − 2

, 1 − 𝑤0,
2 − 𝑤0
𝑤0 + 1

, 𝑤−1
0 ,

𝑤0 + 1
2𝑤0 − 1

(2)

where the first six correspond to the images under the cyclic sub-group of order 6 of 𝐷12.
The central element of 𝐷12 is the transform 𝑤 ↦→ 𝑤−2

2𝑤−1 which exchanges the two 𝑤’s giving
a common 𝑎. The six transforms on the second line are the other elements of order 2 in
𝐷12.

For example the twelve values 𝑤 which give polynomials 𝑋 (𝑋 − 1) (𝑋 − 𝑤2−2𝑤
𝑤2−1 ) in

the same Q-equivalence class as 𝑋 (𝑋 − 9)(𝑋 − 24) are 𝑤 = 1
5 , −1

2 , −4, 3, 5
4 , 2

3 , −1
4 , 1

3 ,
4
5 , 3

2 , 5, and −2. They correspond to the 𝑎 values 3
8 , −5

3 , 8
5 , −3

5 , 5
8 , 8

3 , where 3
8 is the sole

representative in (0, 1
2 ).

The following general table of correspondence holds:

𝑤 1 − 𝑤 1
𝑤

𝑤
𝑤−1

1
1−𝑤

𝑤−1
𝑤

𝑎 = 𝑤2−2𝑤
𝑤2−1

1
𝑎 1 − 𝑎 𝑎

𝑎−1
𝑎−1
𝑎

1
1−𝑎

Its explanation will emerge from the interpretation of 𝑤 ↦→ 𝑎 obtained in the last section
of this paper, which will provide the proof of Theorem 3.

Theorem 4. The Z-classes of Z-nice polynomials with distinct roots are in one-to-one
correspondence with the triples (𝑞, 𝑝, ℓ) of integers verifying:

• 0 < 𝑝 < (2 −
√

3)𝑞,

• (𝑝, 𝑞) = 1,

• ℓ > 0,

where a representative polynomial of the class indexed by (𝑞, 𝑝, ℓ) is

(𝑋 − ℓ3𝜖 𝑝2)(𝑋 − ℓ3𝜖2𝑝𝑞) (𝑋 − ℓ3𝜖𝑞2) ,

with 𝜖 = 0 if 3 | 𝑝 + 𝑞 and 1 if 3 ∤ 𝑝 + 𝑞. Its derivative has its roots at respectively ℓ3𝜖 𝑝𝑞
and ℓ3𝜖 (2𝑝2 + 𝑝𝑞 + 2𝑞2)/3.
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𝑤 = 1𝑤 = −1

𝑎 = 1

𝑆1

𝑆2

𝑆3

𝑆4

𝑆5

𝑆6

𝑆7

𝑆8

𝑆9

𝑆10

𝑆11

𝑆12

𝑤

𝑎

� �
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�

�

�

�

�

�
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�

�

�

�

�
�

�

�

Figure 2: The 𝑤 ↦→ 𝑎 = 𝑤2−2𝑤
𝑤2−1 map

The marked points correspond to the twelve values of 𝑤 in the order of Theorem 3, starting with 𝑆1 = (𝑤 =
1
5 , 𝑎 = 3

8 ). The two values 𝑤1 and 𝑤2 with same image 𝑎 verify 𝑠 = 𝑤1+𝑤2
2 = (1 − 𝑎)−1, hence 𝑎 = 𝑠−1

𝑠

whose graph is the green line. The fact that 𝑤 ↦→ 𝑤−2
2𝑤−1 exchanges 𝑤1 and 𝑤2 is not represented graphically.
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𝑤 = −1

𝑓 (∞) = 2

1 2 3 4 5−1−2−3−4−5
−1

−2

−3

−4

1

2

3

4

5

𝑤

𝑓 (𝑤)

�

�

�

�

�

�

�

�

�

�

�

�

Figure 3: The 𝑓 (𝑤) = 2𝑤−1
𝑤+1 cyclic homography of order 6 and two of its orbits

Together they are a single orbit of a 𝐷12 group of homographies, and these 12 values of 𝑤’s are those such
that 𝑋 (𝑋 − 1)(𝑋 − 𝑎(𝑤)) is in the same Q-class as 𝑋 (𝑋 − 3)(𝑋 − 8).

Indicated is an axis of symmetry corresponding to the fact that the graph is invariant under (𝑥, 𝑦) ↦→
(1 − 𝑦, 1 − 𝑥), i.e. that 1 − 𝑤 = 𝑓 (1 − 𝑓 (𝑤)). Writing 𝜎(𝑤) = 1 − 𝑤, this corresponds to 𝜎 = 𝑓 𝜎 𝑓 , or
( 𝑓 𝜎)2 = Id. More generally, {𝜎, 𝑓 𝜎, 𝑓 2𝜎, 𝑓 3𝜎, 𝑓 4𝜎, 𝑓 5𝜎} give all order 2 elements in 𝐷12 distinct from
the central element. They are the transforms on the second line in Theorem 3 (shifted by 2 mod 6). Looking
at the list we see by same reasoning that also the functional equation 𝑤−1 = 𝑓 ( 𝑓 (𝑤)−1) for example holds,
which means that the graph is invariant under (𝑥, 𝑦) ↦→ (𝑦−1, 𝑥−1).
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The authors are not aware of a previous publication of this precise result. Zuser
statements ([15]) are very close, but he did not consider the problem of enumerating the
equivalence classes of the Z-nice polynomials, only how to construct Z-nice polynomials,
so in particular the restriction 0 < 𝑝 < 𝑞/(2 +

√
3) is nowhere in sight.

Corollary 5. Among all Z-nice polynomials with distinct roots, those having the smallest
separation between the roots of the derivative are the polynomials Z-equivalent to (𝑋 −
1)(𝑋 − 10) (𝑋 − 25). This minimal separation is 14.

Proof of corollary. According to Theorem 4, the separation 𝑆 of the roots of the derivative
for the chosen representative of each class is 𝑆 = ℓ3𝜖2(𝑞2−𝑞𝑝+ 𝑝2)/3. Clearly we have to
take ℓ = 1 to start with. And 0 < 𝑝 < 𝑞/(2+

√
3), 𝜖 = 1 if 3 ∤ 𝑝 + 𝑞, 𝜖 = 0 if 3 | 𝑝 + 𝑞. We

observe that 𝑞2 − 𝑞𝑝 + 𝑝2 = (𝑞− 𝑝/2)2 +3𝑝2/4, and as 𝑞 > 7
2 𝑝, 𝑞2 − 𝑞𝑝 + 𝑝2 > (9+ 3

4 )𝑝2.
For 𝑝 = 2 this is greater than 39, and 𝑆 > 26 then. To achieve a smaller 𝑆 we thus must
take 𝑝 = 1, which gives 𝑆 = 3𝜖2(𝑞2−𝑞+1)/3. This increases strictly with 𝑞, so is minimal
among those allowed 𝑞’s (𝑞 > 2 +

√
3, i.e. 𝑞 ≥ 4) with 3 ∤ 𝑝 + 𝑞 = 1 + 𝑞 for 𝑞 = 4 which

gives then 𝑆 = 3 · 2 · 13/3 = 26. And the smallest allowed 𝑞 ≡ 2 (mod 3) is 𝑞 = 5 giving
𝑆 = 1 · 2 · 21/3 = 14. There is thus a unique Z-class realizing this minimum and it is
obtained for 𝑝 = 1, 𝑞 = 5, (hence 3𝜖 = 1), and ℓ = 1. □

4 Deduction of the integer case from the rational case

Before proving Theorem 2 and Theorem 3, we first explain Theorem 4 as a corollary to
Theorem 1 and Theorem 2.

Let us for𝑄 = 𝑋 (𝑋−1) (𝑋−𝑎) = 𝑋3− (1+𝑎)𝑋2+𝑎𝑋 obtain the roots of its derivative
𝑄′ = 3𝑋2−2(1+𝑎)𝑋 +𝑎. The (reduced) discriminant is Δ = (1+𝑎)2−3𝑎 = 1−𝑎+𝑎2. We
are going to cheat a little here and, rather than replacing immediately 𝑎 by its expression
in terms of 𝑤, first factorize over C this Δ. The result is (𝑎 + 𝑗) (𝑎 + 𝑗2) = |𝑎 + 𝑗 |2, with
𝑗 = exp(2𝜋𝑖/3) (hence 𝑗3 = 1, 𝑗 + 𝑗2 = −1). Let us pursue using only now 𝑤:

𝑎 + 𝑗 = 2𝑤 − 𝑤2 + 𝑗 − 𝑗𝑤2

1 − 𝑤2 =
𝑗 + 2𝑤 − (1 + 𝑗)𝑤2

1 − 𝑤2

=
𝑗 + 2𝑤 + 𝑗2𝑤2

1 − 𝑤2 =
𝑗2( 𝑗2 + 2 𝑗𝑤 + 𝑤2)

1 − 𝑤2 = 𝑗2
(𝑤 + 𝑗)2

1 − 𝑤2

So Δ = |𝑎 + 𝑗 |2 = |𝑤 + 𝑗 |4/(1 − 𝑤2)2 = (𝑤2 − 𝑤 + 1)2/(1 − 𝑤2)2 is a rational square. The
roots of 𝑄′ are thus indeed rational numbers 𝑟 < 𝑠: (here 0 < 𝑤 < 2 −

√
3 < 1)

𝑟 =
1 + 𝑎 −

√
Δ

3
=

1 − 𝑤2 + 2𝑤 − 𝑤2 − (𝑤2 − 𝑤 + 1)
3(1 − 𝑤2)

=
3𝑤(1 − 𝑤)
3(1 − 𝑤2)

=
𝑤

1 + 𝑤

𝑠 =
1 + 𝑎 +

√
Δ

3
=

1 − 𝑤2 + 2𝑤 − 𝑤2 + (𝑤2 − 𝑤 + 1)
3(1 − 𝑤2)

=
2 + 𝑤 − 𝑤2

3(1 − 𝑤2)
=

2 − 𝑤
3(1 − 𝑤)
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It is interesting that 𝑟 and 𝑠 are homographic in 𝑤, hence in one-to-one correspondence
with it; in fact taking a root of 𝑄′ as parameter is also a way to achieve the rational
parametrization of the nice polynomials as we will comment upon later.

There remains the task of computing the level of 𝑄, which has roots at 0, 1, 𝑎, and
whose derivative has roots at 𝑟 and 𝑠. For this we write 𝑤 = 𝑝/𝑞 with (𝑝, 𝑞) = 1,
𝑞 > 0 (let us recall 0 < 𝑤 < 2 −

√
3, in particular 0 < 𝑝 < 𝑞). We have to compute

ℓ(𝑄) = gcd(1, 𝑎, 𝑟, 𝑠), which can be done (using homogeneity under multiplication by
3(𝑞2 − 𝑝2) = 3𝑞2(1 − 𝑤2)) in terms of an integer gcd:

ℓ(𝑄) = gcd(3(𝑞2 − 𝑝2), 3(2𝑞𝑝 − 𝑝2), 3(𝑞𝑝 − 𝑝2), 2𝑞2 + 𝑞𝑝 − 𝑝2)
3(𝑞2 − 𝑝2)

Let’s rewrite the numerator as gcd(𝑖, 𝑗 , 𝑘, 𝑙) with

©«
3 0 −3
0 6 −3
0 3 −3
2 1 −1

ª®®®®®¬
©«
𝑞2

𝑞𝑝

𝑝2

ª®®®¬ =
©«
𝑖

𝑗

𝑘

𝑙

ª®®®®®¬
We see that 1

3𝑖,
1
3 𝑗 and 1

3 𝑘 are computed in terms of 𝑞2, 𝑞𝑝, 𝑝2 by an integer transformation
of determinant −1, hence its inverse also has integer coefficients and 3𝑞2, 3𝑞𝑝 and 3𝑝2 are
integer linear combinations of 𝑖, 𝑗 , and 𝑘 . Thus gcd(𝑖, 𝑗 , 𝑘) divides gcd(3𝑞2, 3𝑝2) = 3,
and consequently is equal to 3. As 𝑙 ≡ −(𝑝+𝑞)2 (mod 3) we conclude that the numerator
gcd is

• 1 if 3 ∤ 𝑝 + 𝑞,

• 3 if 3 | 𝑝 + 𝑞.

Consequently ℓ(𝑄) = (3(𝑞2 − 𝑝2))−1 in the first case and (𝑞2 − 𝑝2)−1 in the second case.
We compute also (𝑞2 − 𝑝2)𝑎 = (𝑞2 − 𝑝2) 2𝑤−𝑤2

1−𝑤2 = 2𝑝𝑞 − 𝑝2. To obtain a level 1
Z-nice polynomial in the class of 𝑋 (𝑋 − 1) (𝑋 − 𝑎) we thus only have to choose the monic
polynomial having its roots at 0, 3𝜖 (𝑞2− 𝑝2) and 3𝜖 (2𝑝𝑞− 𝑝2) where 𝜖 = 1 if 3 ∤ 𝑝+𝑞 and
𝜖 = 0 if 3 | 𝑝 + 𝑞. According to Theorem 1 this is a representative in C(𝑋 (𝑋 − 1) (𝑋 − 𝑎))
of the unique Z-equivalence class of nice level 1 polynomials there.

To obtain a representative of the level ℓ solutions we only need to rescale by ℓ the
roots. We then translate by ℓ3𝜖 𝑝2 to obtain the roots in the form stated in Theorem 4.
The roots of the derivative are also scaled then shifted by ℓ3𝜖 𝑝2. For 𝑟, resp. 𝑠 this gives
first ℓ3𝜖 𝑝(𝑞 − 𝑝) resp. ℓ3𝜖 (2𝑞2 + 𝑞𝑝 − 𝑝2)/3, then after translation we obtain ℓ3𝜖 𝑝𝑞 and
ℓ3𝜖 (2𝑞2 + 𝑞𝑝 + 2𝑝2)/3, and this completes the proof of Theorem 4.

13



5 The “effortless” way to find all nice rational cubics

In this section we will obtain “effortlessly” a construction (equivalent to the one of
Theorem 2) of all equivalence classes of Q-nice polynomials with distinct roots. Let
𝑄 = 𝑋 (𝑋 − 1) (𝑋 − 𝑎) be in the class (we can always map two roots to 0 and 1). We
already computed 𝑄′ = 3𝑋2 − 2(1 + 𝑎)𝑋 + 𝑎. Now, let 𝑟 be one of its supposedly rational
roots. Tautologically:

3𝑟2 − 2(1 + 𝑎)𝑟 + 𝑎 = 0 =⇒ 𝑎 =
3𝑟2 − 2𝑟
2𝑟 − 1

(3)

It can never happen that 𝑟 = 1
2 if the left hand side holds. But this is a parametrization!

We only have to exclude those 𝑟 for which 𝑎 = 0, 𝑎 = 1, or 𝑎 = ∞.
Let thus 𝑟 ∈ Q\{0, 1

3 ,
1
2 ,

2
3 , 1} be given and let 𝑎 be defined by (3). Then 𝑎 ∈ Q\{0, 1},

and 𝑟 is a rational root of𝑄′
𝑎 with𝑄𝑎 = 𝑋 (𝑋 − 1) (𝑋 − 𝑎). The other root 𝑠 is also rational

as 𝑟 + 𝑠 = 2
3 (1 + 𝑎). So 𝑋 (𝑋 − 1) (𝑋 − 𝑎) is a Q-nice cubic polynomial!

We have, with no effort whatsoever, obtained the first part of the following theorem:

Theorem 6. For any 𝑟 ∈ Q \ {0, 1
3 ,

1
2 ,

2
3 , 1}, the polynomial 𝑋 (𝑋 − 1)(𝑋 − 𝑎) with

𝑎 = 𝑟 (2−3𝑟)
1−2𝑟 is a nice rational cubic with distinct roots and this gives all such polynomials

up to Q-equivalence.
More precisely, the equivalence classes of nice rational cubics with distinct roots are

via this association of 𝑋 (𝑋−1) (𝑋−𝑎) to 𝑟 in one-to-one correspondence with the rational
numbers 𝑟 ∈ (0, 1/(3 +

√
3)).

Proof. The first part is already known. For the second part, we admit temporarily that
any equivalence class of nice cubics with distinct roots contains a unique representative
𝑋 (𝑋 − 1) (𝑋 − 𝑎) with 0 < 𝑎 < 1

2 . We will prove this next in Theorem 7.
The map 𝑟 ↦→ 𝑟 (3𝑟 − 2)/(2𝑟 − 1) is strictly increasing (cf its graph): with 𝑦 = 2𝑟 − 1

it is (3𝑦 + 2 − 1/𝑦)/4 whose 𝑦 derivative is (3 + 𝑦−2)/4. So 𝑟 ↦→ 𝑎 is a bijection of
(0, (3 +

√
3)−1) with (0, 1

2 ). As one antecedent of 𝑎 is known to be rational, the other also
is, so we can always impose the condition 0 < 𝑟 < 1/(3 +

√
3). □

As an aside, the other root 𝑠 is expressible as a homographic transform or 𝑟. Indeed:

𝑟 + 𝑠 = 2
3
(1 + 𝑎)

𝑟𝑠 =
1
3
𝑎

 =⇒ 6𝑟𝑠 − 3(𝑟 + 𝑠) + 2 = 0 =⇒

𝑠 =

3𝑟 − 2
6𝑟 − 3

𝑟 =
3𝑠 − 2
6𝑠 − 3

(4)
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Using affine transformations of the roots we can follow this chain:

(0, 1, (3𝑟 − 2)𝑟
2𝑟 − 1

) → (0, 2𝑟 − 1, 3𝑟2 − 2𝑟)

→ (0, 6𝑟 − 3, 9𝑟2 − 6𝑟)
→ (1, 2(3𝑟 − 1), (3𝑟 − 1)2) = (1, 2𝜁, 𝜁2)
→ (1 − 𝜁2, 2𝜁 − 𝜁2, 0)

→ (1, 2𝜁 − 𝜁2

1 − 𝜁2 , 0) ,

(5)

to exhibit in the same class a representative 𝑋 (𝑋 − 1) (𝑋 − 𝑏) with 𝑏 = 2𝜁−𝜁2

1−𝜁2 as in
Theorem 2, with 𝜁 = 3𝑟 − 1. Of course the excluded values of 𝑟 match with those of 𝜁 .

This establishes that the first part of Theorem 2 is equivalent with the first part of
the “effortless” Theorem 6. In other terms we have obtained out of thin air a proof of
Theorem 2, except for the range condition. This range condition follows as in the proof of
Theorem 6 once we have the next statement:

Theorem 7. In any Q-equivalence class of cubic polynomials having distinct roots there
is one and only one 𝑋 (𝑋 − 1) (𝑋 − 𝑎) with 0 < 𝑎 < 1

2 .

Proof. We start by defining an action of the permutation groupS3 onR\{0, 1}. Let 𝑥1 = 0,
𝑥2 = 1, 𝑥3 = 𝑎 ≠ 0, 1. For any permutation 𝜎 ∈ S3, we consider the affine transformation
which maps 𝑥𝜎(1) to 0, and 𝑥𝜎(2) to 1, i.e. 𝑥 ↦→ 𝑓𝜎 (𝑥) = (𝑥 − 𝑥𝜎(1))/(𝑥𝜎(2) − 𝑥𝜎(1)). Let
us define the image of 𝑥𝜎(3) as a transform of 𝑎:

𝑎 · 𝜎 =
𝑥𝜎(3) − 𝑥𝜎(1)
𝑥𝜎(2) − 𝑥𝜎(1)

For example with the transposition 𝜎 = 𝜏12, we obtain 𝑎 · 𝜏12 = (𝑎 − 1)/(0 − 1) = 1 − 𝑎.
And similarly 𝑎 · 𝜏23 = (1 − 0)/(𝑎 − 0) = 1/𝑎. And naturally 𝑎 · 𝑒 = 𝑎.

For any 𝜎, we compute:

𝑎 · 𝜎𝜏12 =
𝑥𝜎𝜏12 (3) − 𝑥𝜎𝜏12 (1)
𝑥𝜎𝜏12 (2) − 𝑥𝜎𝜏12 (1)

=
𝑥𝜎(3) − 𝑥𝜎(2)
𝑥𝜎(1) − 𝑥𝜎(2)

= 1 −
𝑥𝜎(3) − 𝑥𝜎(1)
𝑥𝜎(2) − 𝑥𝜎(1)

= (𝑎 · 𝜎) · 𝜏12

𝑎 · 𝜎𝜏23 =
𝑥𝜎𝜏23 (3) − 𝑥𝜎𝜏23 (1)
𝑥𝜎𝜏23 (2) − 𝑥𝜎𝜏23 (1)

=
𝑥𝜎(2) − 𝑥𝜎(1)
𝑥𝜎(3) − 𝑥𝜎(1)

=
(𝑥𝜎(3) − 𝑥𝜎(1)
𝑥𝜎(2) − 𝑥𝜎(1)

)−1
= (𝑎 · 𝜎) · 𝜏23

Iterating we get also for example 𝑎 · 𝜎𝜏12𝜏23 = (𝑎 · 𝜎𝜏12) · 𝜏23 = ((𝑎 · 𝜎) · 𝜏12) · 𝜏23 =

(𝑎 ·𝜎) ·𝜏12𝜏23. Any permutation 𝜏 can be written as an iterated product of the transpositions
𝜏12 and 𝜏23, so via a recurrence (! not very long actually, but the method of deduction
would apply to any group generated by two elements once the above and 𝑎 · 𝑒 = 𝑎 are
known)

∀𝜎, 𝜏 𝑎 · 𝜎𝜏 = (𝑎 · 𝜎) · 𝜏
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In other words we have defined a group action of S3 on (the right of) R \ {0, 1}. If
𝑋 (𝑋 − 1) (𝑋 − 𝑎) is a nice polynomial, then any 𝑋 (𝑋 − 1) (𝑋 − 𝑏) in its equivalence
class must be such that {0, 1, 𝑏} is the image of {0, 1, 𝑎} by some affine transformation 𝑓 ,
i.e. there exists a permutation 𝑔 of the cardinality 3 set {0, 1, 𝑎} such that 0 = 𝑓 (𝑔(0)),
1 = 𝑓 (𝑔(1)), 𝑏 = 𝑓 (𝑔(𝑎)). Which is the same as saying that 𝑓 = 𝑓𝜎 for some 𝜎 ∈ S3 and
then 𝑏 = 𝑎 · 𝜎.

Doing the computations one finds that the orbit of 𝑎 under this action of S3 is
{𝑎, 1 − 𝑎, 1/𝑎, 𝑎/(𝑎 − 1), 1/(1 − 𝑎), (𝑎 − 1)/𝑎}, i.e. S3 acts (faithfully) by homographic
transformations (which allows to extend the action to all of R ∪ {∞}).

The images of (0, 1
2 ) under the six homographic transformations are (0, 1

2 ), (
1
2 , 1),

(2,∞), (−∞,−1), (1, 2), and (−1, 0). This builds up a partition of (R∪{∞})\ ({0, 1,∞}∪
{−1, 1

2 , 2}). Thus any orbit there has cardinality 6 and possesses exactly one point in
(0, 1

2 ). As the values 𝑎 = 0, 1,∞ are excluded, and also 𝑎 = −1, 1
2 , 2 which do not give

nice polynomials, this completes the proof. □

Most of the above is intuitively obvious, and may be judged as “going without saying”
but in our experience the precise write-up (not admitting without proof that we really
have a group action of S3) will probably be challenging to students. It was not needed for
establishing the theorem to understand the group action, we could have simply commented
upon the properties of {𝑎, 1−𝑎, 1/𝑎, 𝑎/(𝑎−1), 1/(1−𝑎), (𝑎−1)/𝑎}. But we deliberately
want to emphasize group theory here. Theorem 2 (and Theorem 6) are now completely
proven.

6 Lagrange’s resolvent and its dihedral ambiguities

Let 𝑃 be a cubic polynomial, with complex roots 𝑥1, 𝑥2, 𝑥3. Lagrange considers 𝑦1 =

𝑥1 + 𝑥2 𝑗 + 𝑥3 𝑗
2 and 𝑦2 = 𝑥1 + 𝑥2 𝑗

2 + 𝑥3 𝑗 , with 𝑗 = exp(2𝜋𝑖/3) and shows that in 𝑦3
1 + 𝑦

3
2

and 𝑦1𝑦2 one can assemble the roots in symmetrical polynomials, hence one can express
them in terms of the coefficients of 𝑃. This means that one only needs to solve a quadratic
equation to obtain {𝑦3

1, 𝑦
3
2} as a set. One then obtains 𝑦1 from choosing one of the two

elements, then extracting a cube root, which means that we expect 6 possibilities in general.
𝑦2 is then known from 𝑦1𝑦2. Besides 𝑥1 + 𝑥2 + 𝑥3 is known. So we obtain then 𝑥1, 𝑥2, 𝑥3

up to a 6-fold ambiguity, which, we expect, matches the 6-fold ambiguity from permuting
the roots. We do not comment more here on those aspects whose elucidation comes from
Galois theory.

We will focus on polynomials with real roots, then 𝑦1 and 𝑦2 are complex conjugate,
i.e. symmetrical in the real line. This symmetry is an element of the dihedral group 𝐷6 of
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isometries of the equilateral triangle with vertices 1, 𝑗 , 𝑗2. We know that 𝐷6 is isomorphic
to S3 when considering its action on the vertices of the triangle, once they are enumerated.
We choose the enumeration 𝑀1 = 1, 𝑀2 = 𝑗 , 𝑀3 = 𝑗2. Elements of 𝐷6 act on the complex
plane by symmetries and rotations, which are R-linear. We will use the notation 𝑓𝜎 for
the R-linear map on C which does 𝑓𝜎 (𝑀𝑖) = 𝑀𝜎𝑖 (we have abbreviated 𝜎𝑖 = 𝜎(𝑖)). As
𝑓𝜎𝜏 = 𝑓𝜎 ◦ 𝑓𝜏 this is a left action of S3 on C realizing an isomorphism S3 ≃ 𝐷6. Then:

𝑥𝜎1𝑀1 + 𝑥𝜎2𝑀2 + 𝑥𝜎3𝑀3 = 𝑥1𝑀𝜎−11 + 𝑥2𝑀𝜎−12 + 𝑥3𝑀𝜎−13

= 𝑓𝜎−1 (𝑥1𝑀1 + 𝑥2𝑀2 + 𝑥3𝑀3) ,

which we can rewrite as 𝑦1(𝜎) = 𝑦1 ·𝜎, where 𝜎 acts on the right on C via 𝑓𝜎−1 and 𝑦1(𝜎)
is the Lagrange resolvent value for roots which have been permuted by 𝜎 ∈ S3 (as acting
on their indices; some roots may coincide). So 𝑦1(𝜎𝜏) = 𝑦1(𝜎) · 𝜏.

Let us now suppose that 𝑥1, 𝑥2 and 𝑥3 are the roots of some Q-nice polynomial 𝑄.
The Lagrange resolvent 𝑦1 is an element of the field Q( 𝑗). Let us point out the special
elements 𝜔 ≔ 𝑗 + 1 = exp(𝜋𝑖/3), −1 = 𝜔3, and 𝑗2 + 1 = exp(−𝜋𝑖/3) = 𝜔5 which
together with 1, 𝑗 , 𝑗2 are the sixth roots of unity (see the figure). They are the “units”
of the ring Z[ 𝑗] considered by Gauss in the infancy of algebraic number theory. We also
point out that 2 + 𝑗 = 1 + 𝜔 has argument 𝜋/6, it is on the bissector of R+ and R+𝜔:
(2 + 𝑗)2 = 4 + 4 𝑗 + 𝑗2 = 3 + 3 𝑗 = 3𝜔.

The indirect isometries in𝐷6 are the orthogonal symmetries in the linesR (𝑀2 ↔ 𝑀3),
R𝜔 = R 𝑗2 (𝑀1 ↔ 𝑀2), and R 𝑗 = R𝜔5 (𝑀1 ↔ 𝑀3). If 𝑄 has a triple root, then 𝑦1 = 0. If
it has a double root, in the orbit there will be some 𝑥 + 𝑥 𝑗 , i.e. 𝑦1 ≠ 0 is on one of the three
lines of symmetries of the triangle and its orbit has only three points. If 𝑄 has distinct
roots, the orbit has six points, with a unique representative in the angular sector delimited
by the positive real axis and R+𝜔, i.e. 𝑦1 = 𝑣 + 𝑢 𝑗 , 0 < 𝑢 < 𝑣.

How does the Lagrange resolvent change on the equivalence classC of𝑄? A translation
of the roots does not modify 𝑦1. A rescaling scales 𝑦1 by a rational factor: we separate this
into a scaling by a positive rational number, and a possible 𝑦 ↦→ −𝑦 change. A permutation
of the roots corresponds to the action of the dihedral group S3 ≃ 𝐷6. The group generated
by 𝐷6 and 𝑧 ↦→ −𝑧 is the group of isometries of the hexagon of the sixth-roots of unity,
𝐷12. The fundamental domain is “half” of the one for 𝐷6. First let us observe that
(𝑋 − 2)(𝑋 − 1)𝑋 is not a nice polynomial so (2 + 𝑗)Q∗ can never hold the Lagrange
resolvent of a nice polynomial. So, for C whose polynomials have distinct roots, a unique
representative up to positive rescaling can be found in the angular sector delimited by the
positive real axis andR+ exp(𝜋𝑖/6) = R+(2+ 𝑗), i.e. 𝑦1 = 𝑏+𝑎 𝑗 , 0 < 2𝑎 < 𝑏. Normalizing
so that 𝑏 = 1, this gives 𝑦1 = 1 + 𝑎 𝑗 , 0 < 𝑎 < 1

2 . This matches with Theorem 7.
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The quantity 𝑦1𝑦2 is greatly relevant to the study of nice polynomials.

𝑦1𝑦2 = (𝑥1 + 𝑥2 𝑗 + 𝑥3 𝑗
2) (𝑥1 + 𝑥2 𝑗

2 + 𝑥3 𝑗)
= 𝑥2

1 + 𝑥2
2 + 𝑥2

3 − 𝑥1𝑥2 − 𝑥2𝑥3 − 𝑥3𝑥1 ( 𝑗 + 𝑗2 = −1)

This has an interpretation as the reduced discriminant of the derivative of 𝑃 = (𝑋−𝑥1) (𝑋−
𝑥2)(𝑋 − 𝑥3):

𝑃′ = 3𝑋2 − 2(𝑥1 + 𝑥2 + 𝑥3)𝑋 + (𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1)
=⇒ Δ = (𝑥1 + 𝑥2 + 𝑥3)2 − 3(𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3𝑥1) = 𝑦1𝑦2

So, for 𝑥1, 𝑥2, 𝑥3 rational roots, 𝑃 is a nice rational polynomial if and only if 𝑦1𝑦2 = 𝑦1𝑦1

is a rational square. We are thus brought to a question in the number field Q( 𝑗): which
elements 𝑦 ∈ Q( 𝑗) have a norm 𝑁 (𝑦) = 𝑦𝑦 which is a rational square? If 𝑁 (𝑦) = 𝑡2 (and
𝑦 ≠ 0), then 𝑁 (𝑦/𝑡) = 1, and the problem is equivalent to understanding which elements
𝑦 ∈ Q( 𝑗) have norm 1, i.e. are on the unit circle. Here are the answers:

Theorem 8. An element 𝑦 ∈ Q( 𝑗) is such that 𝑁 (𝑦) is a rational square if and only there
exists 𝑡 ∈ Q, and 𝑧 ∈ Q( 𝑗) such that 𝑦 = 𝑡𝑧2.

Theorem 9. An element 𝑦 ∈ Q( 𝑗) is of norm 1 if and only if it can be written as 𝑧/𝑧 for
some 𝑧 ∈ Q( 𝑗)∗.

These two theorems have their natural home in algebraic number theory (the beautiful
Gauss theory of factorization of primes in Z[ 𝑗] and Z[𝑖] started it all), but this is beyond
the scope we have imposed ourselves for this paper, and we seek an alternate route. Let
us first confirm our indication that they are mutually equivalent:

Proof of equivalence. Assume Theorem 8 and let 𝑦 such that 𝑁 (𝑦) = 1. In particular it
is a square so 𝑦 = 𝑡𝑧2 and 1 = 𝑡2𝑁 (𝑧)2, so 𝑡 = ±(𝑧𝑧)−1, and 𝑦 = ±𝑧2/(𝑧𝑧) = ±𝑧/𝑧. To
conclude, we observe that 𝑖

√
3 = 𝑗 + (1 + 𝑗) ∈ Q( 𝑗) and the quotient with its conjugate is

−1.
Conversely, let’s assume Theorem 9 and let 𝑦 be such that 𝑁 (𝑦) = 𝑡2. We can assume

𝑦 ≠ 0, then 𝑦/𝑡 has norm 1, so 𝑦/𝑡 = 𝑧/𝑧 = 𝑧2/𝑁 (𝑧), 𝑦 = 𝑡𝑁 (𝑧)−1𝑧2 is a rational times a
square. □

Theorem 9 has a natural approach via the parametrization of rational points on an
ellipse: if 𝑦 = 𝑎 + 𝑏 𝑗 , then 𝑁 (𝑦) = 𝑎2 + 𝑏2 − 𝑎𝑏 so we are looking at the ellipse equation
𝑎2 + 𝑏2 − 𝑎𝑏 = 1. As this ellipse already has known points (the six points corresponding
to the roots of unity ⟨𝜔⟩), the well-known “slope of chord” parametrization method would
help us describe the rational solutions. But we will not repeat this here as it is done in
most papers dealing with nice cubics, such as Zuser [15].
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We would like some “effortless” way of understanding this topic! It would be a bit of a
cheat to exploit our “effortless”-acquired understanding of nice polynomials, which, as we
explained, is intimately associated with the 𝑦𝑦 = □ equation. We want another approach.
The key observation here is that the equation 𝑦 = 𝑧/𝑧 is a homogeneousQ-linear constraint
on the unknown 𝑧 ∈ Q( 𝑗). So the theory of linear systems will solve this: we only have
to compute some determinant. We can even do this abstractly:

Proof of Theorem 9. Let 𝑓𝑦 be theQ-linear endomorphism ofQ( 𝑗) defined by 𝑓𝑦 (𝑧) = 𝑦𝑧.
Then 𝑓 2

𝑦 (𝑧) = 𝑁 (𝑦)𝑧. So, if 𝑁 (𝑦) = 1 (in particular 𝑦 ≠ 0), then ( 𝑓𝑦 − Id) ◦ ( 𝑓𝑦 + Id) =
𝑓 2
𝑦 − Id = 0. If the equation 𝑓𝑦 (𝑧) = 𝑧 has no non-zero solution then 𝑓𝑦 − Id is injective

and we obtain 𝑓𝑦 = − Id which is wrong: certainly 𝑧/𝑧 is not constant on Q( 𝑗)∗. So there
is a non-zero 𝑧 with 𝑓𝑦 (𝑧) = 𝑧. □

If we express things with a matrix using the (1, 𝑗) basis we obtain for 𝑓𝑦 associated
to 𝑦 = 𝛼 + 𝛽 𝑗 the

(
𝛼 −𝛼+𝛽
𝛽 −𝛼

)
matrix whose determinant is −𝛼2 + 𝛼𝛽 − 𝛽2 = −𝑁 (𝑦), and

whose trace is zero. The characteristic equation is 𝜆2 = 𝑁 (𝑦) and it has rational solutions
if and only 𝑁 (𝑦) is a rational square (which could be used for a proof of Theorem 8).

Let us recapitulate what we have so far: nice cubic polynomials 𝑄 = (𝑋 − 𝑥1)(𝑋 −
𝑥2)(𝑋−𝑥3) are characterized from the fact that the Lagrange resolvent 𝑦(𝑄) = 𝑥1+𝑥2 𝑗+𝑥3 𝑗

2

verifies 𝑁 (𝑦) = □, or equivalently from Theorem 8 that 𝑦 = 𝑡𝑧2 for some 𝑡 ∈ Q, 𝑧 ∈ Q( 𝑗).
There is a 𝐷6 ambiguity in 𝑦(𝑄) and if we consider equivalence classes it becomes a
𝐷6 × Q∗ = 𝐷12 × Q∗+ ambiguity. Assuming that the roots are distinct, 𝑦 = 𝛽 + 𝛼 𝑗 is
necessarily with 𝛽 ≠ 0, and modulo Q∗, we can replace it with 1 + 𝑎 𝑗 , 𝑎 = 𝛼/𝛽. This
means taking the intercept of Q𝑦 with the line 𝐷 going through 1 and 𝜔 = 1 + 𝑗 . We will
call 𝐷 the 𝑎-line. Then 𝐷 ∪ {∞} is in natural bijection with Q( 𝑗)∗/Q∗, and we will use
the notation [𝑦] for the point 1 + 𝑎 𝑗 on 𝐷 corresponding to 𝑦 = 𝛽 + 𝛼 𝑗 .

We can compute the induced S3 ≃ 𝐷6 left-action on the 𝑎-line:

[𝜏12(1 + 𝑎 𝑗)] = [ 𝑗 + 𝑎] = [1 + 𝑎−1 𝑗]
[𝜏23(1 + 𝑎 𝑗)] = [1 + 𝑎 𝑗2] = [1 − 𝑎 − 𝑎 𝑗] = [1 + 𝑎/(𝑎 − 1) 𝑗]
[𝜏13(1 + 𝑎 𝑗)] = [ 𝑗2 + 𝑎 𝑗] = [−1 + (𝑎 − 1) 𝑗] = [1 + (1 − 𝑎) 𝑗]
[ 𝑗 (1 + 𝑎 𝑗)] = [−𝑎 + (1 − 𝑎) 𝑗] = [1 + (𝑎 − 1)/𝑎 𝑗]
[ 𝑗2(1 + 𝑎 𝑗)] = [𝑎 − 1 − 𝑗] = [1 + (1 − 𝑎)−1 𝑗] .

It has the same orbits as the right action considered in the proof of Theorem 7 but we
leave it to the reader as an exercise to elucidate the inner automorphism 𝜙 of S3 such that
[𝜙(𝜎−1)(1 + 𝑎 𝑗)] = [1 + (𝑎 · 𝜎) 𝑗]. . .
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Figure 4: Hexagonal lattice in complex plane and orbits of dihedral group
The 𝑤 ↦→ 𝑎 map parametrizing nice cubic polynomials is simply the squaring map in complex plane as

applied to elements of Q( 𝑗), and then projectivized to the quotient Q( 𝑗)/Q∗.

From a point𝑊 in complex plane not on the symmetry lines of the unit hexagon, six points are obtained
via the action of the symmetries 𝐷6 of the equilateral triangle of cube roots of unity; and twelve points from
the group 𝐷12 of symmetries of the hexagon, which also contains 𝑧 ↦→ −𝑧. Central projection from the
origin to the line 1 + R 𝑗 then gives 12/2 = 6 points 1 + 𝑤 𝑗 (they are indeed distinct). Squaring the 1 + 𝑤 𝑗
(or the points of the𝑊-orbit) in complex plane and projecting gives 6 points 1 + 𝑎 𝑗 (they are distinct). If 𝑤
is rational, then the 𝑎’s are also.

The picture is with 𝑤 = 1
5 , which gives 𝑎 = 3

8 .

Another 𝐷12 orbit in the complex plane is obtained from first one by applying a rotation by a right angle
and scaling by

√
3, which replaces 𝑊 by 𝑊 ′. So after projection we now have twelve values of 𝑤. The

square+project operation gives the same already obtained 6 values for 1 + 𝑎 𝑗 ((𝑖
√

3𝑧)2 = −3𝑧2 gives same
image as 𝑧2). Altogether this means there are twelve 𝑤 ∈ Q giving the six 𝑎’s of a 𝐷6 orbit on 1+Q 𝑗 ∪ {∞}.

These twelve 𝑤 values are the orbit of the projective action on the 1 + R 𝑗 line of 𝐷24/{± Id} where 𝐷24
is the group of symmetries of the dodecagon. The action in the plane of 𝐷24 (which adds 𝑧 ↦→ 𝑖𝑧 to 𝐷12)
does not leave stable Q( 𝑗) as 𝑖 ∉ Q( 𝑗). But 𝑖

√
3 ∈ Q( 𝑗), so the induced projective action on 1 + R 𝑗 ∪ {∞}

leaves stable 1 + Q 𝑗 ∪ {∞}.
The shaded angular sector of opening angle 30◦ is a fundamental domain for the action of 𝐷12 and its

bottom half of opening angle 15◦ is fundamental domain for 𝐷24, which maps to the 0 < 𝑤 < 2 −
√

3 range
in Theorem 2. 20



The equation 𝑦 = 1 + 𝑎 𝑗 = 𝑡𝑧2 = 𝑡 (𝑣 + 𝑢 𝑗)2 = 𝑡 (𝑣2 + 2𝑣𝑢 𝑗 + 𝑢2 𝑗2) becomes:

1 = 𝑡 (𝑣2 − 𝑢2)
𝑎 = 𝑡 (2𝑣𝑢 − 𝑢2)

}
=⇒ 𝑎 =

2𝑣𝑢 − 𝑢2

𝑣2 − 𝑢2 =
2𝑤 − 𝑤2

1 − 𝑤2 (𝑤 =
𝑢

𝑣
)

which is precisely the parametrization from Theorem 2 of nice cubics𝑄 = 𝑋 (𝑋−1)(𝑋−𝑎).
It can not happen that 𝑣 = 0, as this would give 𝑦 = 𝑡𝑢2 𝑗2 which is on one the three lines
of symmetries of {1, 𝑗 , 𝑗2} corresponding to polynomials with multiple roots. In terms of
𝑤, [𝑦] = [(1+𝑤 𝑗)2], in other words we are simply inducing on 𝐷 ∪ {∞} ≃ Q( 𝑗)∗/Q∗ the
squaring operation of Q( 𝑗).

Let us examine what happens if we replace 𝑧 by points of its 𝐷6 orbit in the 𝑦 = 𝑡𝑧2

relation: 𝑡 ( 𝑗 𝑧)2 = 𝑗2𝑦, 𝑡 ( 𝑗2𝑧)2 = 𝑗 𝑦, 𝑡 (𝑧)2 = 𝑦, 𝑡 ( 𝑗 𝑧)2 = 𝑗2𝑦, 𝑡 ( 𝑗2𝑧)2 = 𝑗 𝑦: they are
mapped to the six points of the 𝑦 orbit. More precisely the above establishes

𝑡 (𝜎 · 𝑧)2 = (𝜏23𝜎𝜏23) · 𝑡𝑧2 ,

as 𝜏23 does the exchange 𝑗 ↔ 𝑗2 (or is seen as complex conjugation). This explains
the correspondence table given previously between the 𝐷6-orbit of 𝑤 and the one of
𝑎 = (𝑤2 − 2𝑤)/(𝑤2 − 1).

The expression 𝑎 = 2𝑤−𝑤2

1−𝑤2 is two-to-one: (1 − 𝑎)𝑤2 − 2𝑤 + 𝑎 = 0. If 𝑤1 and 𝑤2 are
the two roots, then we can eliminate 𝑎 from 𝑤1 + 𝑤2 = 2/(1 − 𝑎), 𝑤1𝑤2 = 𝑎/(1 − 𝑎) =
−1 + 1/(1 − 𝑎):

2𝑤1𝑤2 − 𝑤1 − 𝑤2 + 2 = 0 =⇒

𝑤1 =

𝑤2 − 2
2𝑤2 − 1

𝑤2 =
𝑤1 − 2
2𝑤1 − 1

This corresponds to the induced action on the 1 + 𝑤 𝑗 line via the Q-linear map 𝑣 + 𝑢 𝑗 ↦→
(2𝑢−𝑣) + (𝑢−2𝑣) 𝑗 = 𝑢(2+ 𝑗) −𝑣(1+2 𝑗) = 𝑢 𝑗 (2 𝑗2+1) −𝑣(1+2 𝑗) = −(1+2 𝑗) (𝑣+𝑢 𝑗) =
−𝑖
√

3(𝑣 + 𝑢 𝑗). Let us denote by 𝜌 this induced action on the quotient Q( 𝑗)∗/Q∗. Then
𝜌2 = Id. Let use examine what is the group generated by this homography of order two
and the previously studied 𝐷6 action (which we expressed in the 𝑎-notation).

As 𝜌 is induced by a complex multiplication, as are the 3-cycle elements of 𝐷6, they
commute. The composition 𝜌𝜏23 is induced from 𝑧 ↦→ −𝑖

√
3𝑧 = −(−𝑖

√
3)𝑧, and as the

sign −1 disappears in the quotient by Q∗, this is same as 𝜏23𝜌. As 𝐷6 is generated by
the elements accounted for so-far, this means that 𝜌 commutes with the full 𝐷6 action on
Q( 𝑗)∗/Q∗.

So we obtain a group 𝐺 ≃ 𝐷6 × Z/2Z acting on the 𝑤-line Q( 𝑗)∗/Q∗. This group
is of cardinality 12, because it contains an isomorphic copy of 𝐷6, and 𝜌 isn’t there (as
it commutes with all of 𝐷6). It is thus isomorphic with 𝐷12, which also has a structure

21



𝐷6×Z/2Zwhere it is 𝑧 ↦→ −𝑧which plays the role of the order two element commuting with
𝐷6. Any 1 + 𝑤 𝑗 with 𝑤 ∉ {−1, 0, 1

2 , 1, 2,∞} has an orbit of full cardinality: the squaring
map [(1 + 𝑤 𝑗)2] = [1 + 𝑎 𝑗] has two antecedents for each image ((1 − 𝑎)𝑤2 − 2𝑤 + 𝑎 = 0
has reduced discriminant 1−𝑎+𝑎2 > 0, also works for 𝑎 = ∞, then 𝑤 = ±1, but not for the
two 𝑎 ∈ {𝜔, 𝜔} special complex values: and indeed it is a well known algebro-analytico-
geometric fact that the projective line can not have a non-ramified connected covering),
and we have shown that the 𝐷6-orbit on the [1 + 𝑤 𝑗] line maps (not covariantly) to the
𝐷6-orbit on the [1 + 𝑎 𝑗] (projective) line, which has cardinality 6 if 𝑎 ∉ {0, 1,∞} and
𝑎 ∉ {−1, 1

2 , 2}, but the latter values are excluded for nice polynomials (they can not be
obtained for 𝑤 ∈ Q), and the former values correspond to 𝑤 = −1, 0, 1

2 , 1, 2,∞.
Let us list explicitly the twelve homographic images of 𝑤 ∉ {−1, 0, 1

2 , 1, 2,∞}. There
is a unique cyclic group of order 6 in 𝐷12, and it has two generators which will be given
by the actions of 𝜌𝜎 where 𝜎 = (123) (i.e. multiplication by 𝑗) or (132) (multiplication
by 𝑗2). We choose the latter (because − 𝑗2 = 𝜔 would rotate in the direct trigonometrical
sense). We know that 𝜌 acts as the homography associated with

( 1 −2
2 −1

)
, and we checked

that the multiplication by 𝑗2 induces𝑤 ↦→ (1−𝑤)−1 on the projective line, i.e. is associated
with

( 0 1
−1 1

)
. So 𝜆 = 𝜌𝜎 of order 6 acts as the homography 𝑤 ↦→ 2𝑤−1

𝑤+1 (we computed
this from the product of the two 2 × 2 matrices above). Iterating, we obtain the following
images induced by direct transforms on the complex plane:

𝑤,
2𝑤 − 1
𝑤 + 1

,
𝑤 − 1
𝑤

,
𝑤 − 2
2𝑤 − 1

,
1

1 − 𝑤 ,
𝑤 + 1
2 − 𝑤 (6)

The other 6 can be obtained from composing with any one of the three symmetries in 𝐷6,
for example 𝜏23, which acts like complex conjugation 𝑗 ↦→ 𝑗2 = −1 − 𝑗 which gives on
[1 + 𝑤 𝑗] the homography with matrix

( 1 0
1 −1

)
. Here are thus the images induced from

indirect transforms on the plane:

𝑤

𝑤 − 1
,
2𝑤 − 1
𝑤 − 2

, 1 − 𝑤, 2 − 𝑤
𝑤 + 1

, 𝑤−1,
𝑤 + 1

2𝑤 − 1
. (7)

The pairs (𝑤1, 𝑤2) which map to the same 𝑎 are to be found at indices differing by 3
modulo 6 in these two lists (because 𝜆3 is the central element which realizes 𝑤2 = 𝜌(𝑤1),
𝑤1 = 𝜌(𝑤2)). This completes the proof of Theorem 3.

We end with a re-interpretation of this 𝐷12. Let us consider the dodecagon whose
vertices are the twelfth-roots of unity. Its symmetry group is the dihedral group of car-
dinality 24, 𝐷24, whose center Z consists of the two transforms 𝑧 ↦→ 𝑧, and 𝑧 ↦→ −𝑧.
Projectivizing its action to the 𝑎-line 1 + R 𝑗 , we obtain a faithful action of 𝐷24/Z. The
map 𝐷6 → 𝐷24/Z is injective but from 𝐷12 it is two-to-one as Z ⊂ 𝐷12. The cardi-
nality 12 group 𝐷24/Z is however isomorphic to 𝐷12, as the action 𝜌 of (projectivized)
multiplication by 𝑖 is a central element: 𝑖𝑧 = −𝑖𝑧 becomes [𝑖𝑧] = [𝑖𝑧] which means that
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𝜌 commutes with the element of 𝐷6 originating in complex conjugation on the plane and
as it commutes with those originating in rotations, it commutes with all of 𝐷6. In the
plane the image of the hexagon of sixth roots of unity by an element 𝑔 of 𝐷24 is either
itself (if 𝑔 ∈ 𝐷12) or the hexagon with the other six vertices of the dodecagon. So the
elements of 𝐷24/Z not in (the image of) 𝐷6 are those which exchange the two cardinality
3 orbits {0, 1,∞} and {−1, 1

2 , 2} of the 𝐷6 homographies. The central element 𝜌 is the
one which maps 0 to 2, 1 to −1 and ∞ to 1

2 . Let us prove that it is the only non trivial
homography 𝑔 (even allowing complex coefficients) which commutes with the S3 ≃ 𝐷6

group of {0, 1,∞}-preserving homographies: as there is only one other cardinality 3 orbit
{−1, 1

2 , 2}, such a 𝑔 must map {0, 1,∞} to either itself, but then it would be an element of
the center of S3 hence the identity, or to {−1, 1

2 , 2}. And for the same reason it must map
{−1, 1

2 , 2} to {0, 1,∞}, so if we have two solutions 𝑔1 and 𝑔2, then 𝑔2 ◦ 𝑔1 maps {0, 1,∞}
to itself and commutes with S3 hence must be the identity. So in particular 𝑔2 = Id, and
𝑔 is unique, if it exists. And it exists from the 𝐷24/Z construction or direct verification
once it has been found to be 𝑡 ↦→ 𝑡−2

2𝑡−1 .
One can also prove this unicity using matrices, but attention that commutativity of two

homographies only means that representative matrices either commute or anti-commute!
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